nb.ipynb
from sklearn.ensemble import StackingClassifier

X, y = make_classification(n_samples=1000, n_features=5)
estimators = [
    ("dtree", DecisionTreeClassifier()),
    ("sgd", SGDClassifier()),
    ("svc", SVC()),
]

log_reg = LogisticRegression()

ensemble = StackingClassifier(estimators, final_estimator=log_reg, n_jobs=-1)

ensemble.fit(X, y)