nb.ipynb
from sklearn.ensemble import VotingClassifier

X, y = make_classification(n_samples=1000, n_features=5)

estimators = [
    ("dtree", DecisionTreeClassifier()),
    ("etree", ExtraTreeClassifier()),
    ("log_reg", LogisticRegression()),
]

ensemble = VotingClassifier(estimators=estimators, voting="soft", n_jobs=-1)

ensemble.fit(X, y)